### Who's Online

We have 82 guests and no members online

The primus is composite all over, in particular:
U2n-1 = (Un - Un-1)(Un+Un-1) (primus theorem 2.2).

Since the tertius and quartus can be derived from the primus by taking subsequent differences and sums of its terms, the primus on odd indices equals tertius*quartus.
This caught my attention.

Well yet everyone see that cialis for sale cheap can be found with ease in the Internet. In exclusive on our website it is full of it. But you forget and constantly you ask.

Sum-indexing
Let's have a look at tertius- & quartus-factorization, but now with 'sum-indexing' derived from the parent series in the following way:
 T2n-1 = Un - Un-1 Defines sum-indexing for the tertius. Q2n-1 = Un + Un-1 Defines sum-indexing for the quartus.

The tertius and quartus, obtained by taking the differences and sums of subsequent terms of the primus, are now indexed by the sums of the indices of subsequent terms of that series. This has remarkable consequences:
• With sum-indexing factors of indices correspond one-to-one with factors of the corresponding terms.

This structural factorization means that for every prime factor of the index one factor of the term can be predicted. It includes equal primes so the number of factors that can be predicted on grounds of the method involved, equals the sum of the exponents of the different primes of the index.
Of these factors some are again predictably composite on grounds of the tertius' & quartus' basic properties that are restated below.
With sum-indexing, irrespective of the factor 'F' of the series:
• If a term on a prime index is prime, it is of the 'near multiple' form: 2k*index±1.
If it is composite, its factors are either the index itself or a near-multiple.

There can be no structural factorization of terms with a prime index. To prove this, it's enough to prove it for one factor and for the quartus this is easily done if we take a look at the series U(0,1,0)2, otherwise known as the primus of 2 or the series of integers.
The factor's tertius is characterized by Un=1 while its quartus is the series of odd integers. If we take a look at that one in sum-indexing, it's obvious that Q2n+1=Un+1+Un=2n+1 will always be prime if its index is prime :)

With sum-indexing, Un | Un+k(2n-1), the basic property of the tertius and the quartus for every integer k, looks like this:
 T2n-1 | T(2k-1)(2n-1) Basic property tertius Q2n-1 | Q(2k-1)(2n-1) Basic property quartus

From the definition and primus theorem 2.2 follows:
 U2n-1 = T(2n-1) * Q(2n-1) Primus theorem 6

ICF Tertius
The table shows the index-correlated factorization of the first 67 terms of the tertius, as well as the composition of the terms in terms of previous terms.
The indexing is derived from the primus in the following way:
T2n-1 = Un - Un-1   (definition)

For brevety we'll represent the formula as T(2n-1) = n-(n-1), for example T3=2-1.

Note that the indices of the 'U' terms of every single factor sum to 1.

Index-correlated factorization gives a one-on-one mapping with regard to the index.
Once introduced factors reappear following the tertius' basic property T2n-1 | T(2k-1)(2n-1).

The occurence of prime-indices as actual factors of the corresponding term
A prime factor 'p' appears in a term on index Tp for F=(p-2) and, following the tertius' basic property, reappears in the same series on T(2k-1)p for every natural k.
For primes bigger than 3, all other factors on prime-indices will always be 'near-multiples' of the form 2kp±1.

 Tertius Factors T1 = (1-0) T3 = (2-1) T5 = (3-2) T7 = (4-3) T9 = (2-1) * (4-(2+1)) T11 = (6-5) T13 = (7-6) T15 = (2-1) * (7-(5+4)+(2+1)) T17 = (9-8) T19 = (10-9) T21 = (2-1) * (10-(8+7)+(5+4)-(2+1)) T23 = (12-11) T25 = (3-2) * (11-(9+6)+(4+1)) T27 = (2-1) * (4-(2+1)) * (10-(8+1)) T29 = (15-14) T31 = (16-15) T33 = (2-1) * (16-(14+13)+(11+10)-(8+7)+(5+4)-(2+1)) T35 = (3-2) * (16-(14+11)+(9+6)-(4+1)) T37 = (19-18) T39 = (2-1) * (19-(17+16)+(14+13)-(11+10)+(8+7)-(5+4)+(2+1)) T41 = (21-20) T43 = (22-21) T45 = (2-1) * (4-(2+1)) * (19-(17+10)+(8+1)) T47 = (24-23) T49 = (4-3) * (22-(20+15)+(13+8)-(6+1)) T51 = (2-1) * (25-(23+22)+(20+19)-(17+16)+(14+13)-(11+10)+(8+7)-(5+4)+(2+1)) T53 = (27-26) T55 = (3-2) * (26-(24+21)+(19+16)-(14+11)+(9+6)-(4+1)) T57 = (2-1) * (28-(26+25)+(23+22)-(20+19)+(17+16)-(14+13)+(11+10)-(8+7)+(5+4)-(2+1)) T59 = (30-29) T61 = (31-30) T63 = (2-1) * (4-(2+1)) * (28-(26+19)+(17+10)-(8+1)) T65 = (3-2) * (31-(29+26)+(24+21)-(19+16)+(14+11)-(9+6)+(4+1)) T67 = (34-33) T69 = (2-1) * (34-(32+31)+(29+28)-(26+25)+(23+22)-(20+19)+(17+16)-(14+13)+(11+10)-(8+7)+(5+4)-(2+1)) T71 = (36-35) T73 = (37-36) T75 = (2-1) * (7-(5+4)+(2+1)) * (31-(29+16)+(14+1)) T77 = (4-3) * (36-(34+29)+(27+22)-(20+15)+(13+8)-(6+1)) T79 = (40-39) T81 = (2-1) * (4-(2+1)) * (10-(8+1)) * (28-(26+1)) T83 = (42-41) T85 = (3-2) * (41-(39+36)+(34+31)-(29+26)+(24+21)-(19+16)+(14+11)-(9+6)+(4+1)) T87 = (2-1) * (43-(41+40)+(38+37)-(35+34)+(32+31)-(29+28)+(26+25)-(23+22)+(20+19)-(17+16)+(14+13)-(11+10)+(8+7)-(5+4)+(2+1)) T89 = (45-44) T91 = (4-3) * (43-(41+36)+(34+29)-(27+22)+(20+15)-(13+8)+(6+1)) T93 = (2-1) * (46-(44+43)+(41+40)-(38+37)+(35+34)-(32+31)+(29+28)-(26+25)+(23+22)-(20+19)+(17+16)-(14+13)+(11+10)-(8+7)+(5+4)-(2+1)) T95 = (3-2) * (46-(44+41)+(39+36)-(34+31)+(29+26)-(24+21)+(19+16)-(14+11)+(9+6)-(4+1)) T97 = (49-48) T99 = (2-1) * (4-(2+1)) * (46-(44+37)+(35+28)-(21+19)+(17+10)-(8+1)) T101 = (51-50) T103 = (52-51) T105 = (2-1) * (7-(5+4)+(2+1)) * (46-(44+31)+(29+16)-(14+1)) T107 = (54-53) T109 = (55-54) T111 = (2-1) * (55-(53+52)+(50+49)-(47+46)+(44+43)-(41+40)+(38+37)-(35+34)+(32+31)-(29+28)+(26+25)-(23+22)+(20+19)-(17+16)+(14+13)-(11+10)+(8+7)-(5+4)+(2+1)) T113 = (57-56) T115 = (3-2) * (56-(54+51)+(49+46)-(44+41)+(39+36)-(34+31)+(29+26)-(24+21)+(19+16)-(14+11)+(9+6)-(4+1)) T117 = (2-1) * (4-(2+1)) * (55-(53+46)+(44+37)-(35+28)+(21+19)-(17+10)+(8+1)) T119 = (4-3) * (57-(55+50)+(48+43)-(41+36)+(34+29)-(27+22)+(20+15)-(13+8)+(6+1)) T121 = (6-5) * (56-(54+45)+(43+34)-(32+23)+(21+12)-(10+1)) T123 = (2-1) * (61-(59+58)+(56+55)-(53+52)+(50+49)-(47+46)+(44+43)-(41+40)+(38+37)-(35+34)+(32+31)-(29+28)+(26+25)-(23+22)+(20+19)-(17+16)+(14+13)-(11+10)+(8+7)-(5+4)+(2+1)) T125 = (3-2) * (11-(9+6)+(4+1)) * (51-(49+26)+(24+1)) T127 = (64-63) T129 = (2-1) * (64-(62+61)+(59+58)-(56+55)+(53+52)-(50+49)+(47+46)-(44+43)+(41+40)-(38+37)+(35+34)-(32+31)+(29+28)-(26+25)+(23+22)-(20+19)+(17+16)-(14+13)+(11+10)-(8+7)+(5+4)-(2+1)) T131 = (66-65) T133 = (4-3) * (64-(62+57)+(55+50)-(48+43)+(41+36)-(34+29)+(27+22)-(20+15)+(13+8)-(6+1))

You may be interested in the method involved.

ICF Quartus
The table shows the index-correlated factorization of the first 67 terms of the quartus, as well as the composition of the terms in terms of previous terms.
The indexing is derived from the primus in the following way:
Q2n-1 = Un + Un-1   (definition)

For brevety we'll represent the formula as Q(2n-1) = n+(n-1), for example Q3=2+1.

Note that the indices of the 'U' terms of every single factor sum to the corresponding factor of the index.

Index-correlated factorization gives a one-on-one mapping with regard to the index.
Once introduced factors reappear following the quartus' basic property Q2n-1 | Q(2k-1)(2n-1).

The occurence of prime-indices as actual factors of the corresponding term
A prime factor 'p' appears in a term on index Qp for F=(p+2) and, following the quartus' basic property, reappears in the same series on Q(2k-1)p for every natural k.
For primes bigger than 3, all other factors on prime-indices will always be 'near-multiples' of the form 2kp±1.

 Quartus Factors Q1 = (1+0) Q3 = (2+1) Q5 = (3+2) Q7 = (4+3) Q9 = (2+1) * (4-(2-1)) Q11 = (6+5) Q13 = (7+6) Q15 = (2+1) * (7-(5-4)-(2-1)) Q17 = (9+8) Q19 = (10+9) Q21 = (2+1) * (10-(8-7)-(5-4)-(2-1)) Q23 = (12+11) Q25 = (3+2) * (11-(9-6)-(4-1)) Q27 = (2+1) * (4-(2-1)) * (10-(8-1)) Q29 = (15+14) Q31 = (16+15) Q33 = (2+1) * (16-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q35 = (3+2) * (16-(14-11)-(9-6)-(4-1)) Q37 = (19+18) Q39 = (2+1) * (19-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q41 = (21+20) Q43 = (22+21) Q45 = (2+1) * (4-(2-1)) * (19-(17-10)-(8-1)) Q47 = (24+23) Q49 = (4+3) * (22-(20-15)-(13-8)-(6-1)) Q51 = (2+1) * (25-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q53 = (27+26) Q55 = (3+2) * (26-(24-21)-(19-16)-(14-11)-(9-6)-(4-1)) Q57 = (2+1) * (28-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q59 = (30+29) Q61 = (31+30) Q63 = (2+1) * (4-(2-1)) * (28-(26-19)-(17-10)-(8-1)) Q65 = (3+2) * (31-(29-26)-(24-21)-(19-16)-(14-11)-(9-6)-(4-1)) Q67 = (34+33) Q69 = (2+1) * (34-(32-31)-(29-28)-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q71 = (36+35) Q73 = (37+36) Q75 = (2+1) * (7-(5-4)-(2-1)) * (31-(29-16)-(14-1)) Q77 = (4+3) * (36-(34-29)-(27-22)-(20-15)-(13-8)-(6-1)) Q79 = (40+39) Q81 = (2+1) * (4-(2-1)) * (10-(8-1)) * (28-(26-1)) Q83 = (42+41) Q85 = (3+2) * (41-(39-36)-(34-31)-(29-26)-(24-21)-(19-16)-(14-11)-(9-6)-(4-1)) Q87 = (2+1) * (43-(41-40)-(38-37)-(35-34)-(32-31)-(29-28)-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q89 = (45+44) Q91 = (4+3) * (43-(41-36)-(34-29)-(27-22)-(20-15)-(13-8)-(6-1)) Q93 = (2+1) * (46-(44-43)-(41-40)-(38-37)-(35-34)-(32-31)-(29-28)-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q95 = (3+2) * (46-(44-41)-(39-36)-(34-31)-(29-26)-(24-21)-(19-16)-(14-11)-(9-6)-(4-1)) Q97 = (49+48) Q99 = (2+1) * (4-(2-1)) * (46-(44-37)-(35-28)-(21-19)-(17-10)-(8-1)) Q101 = (51+50) Q103 = (52+51) Q105 = (2+1) * (7-(5-4)-(2-1)) * (46-(44-31)-(29-16)-(14-1)) Q107 = (54+53) Q109 = (55+54) Q111 = (2+1) * (55-(53-52)-(50-49)-(47-46)-(44-43)-(41-40)-(38-37)-(35-34)-(32-31)-(29-28)-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q113 = (57+56) Q115 = (3+2) * (56-(54-51)-(49-46)-(44-41)-(39-36)-(34-31)-(29-26)-(24-21)-(19-16)-(14-11)-(9-6)-(4-1)) Q117 = (2+1) * (4-(2-1)) * (55-(53-46)-(44-37)-(35-28)-(21-19)-(17-10)-(8-1)) Q119 = (4+3) * (57-(55-50)-(48-43)-(41-36)-(34-29)-(27-22)-(20-15)-(13-8)-(6-1)) Q121 = (6+5) * (56-(54-45)-(43-34)-(32-23)-(21-12)-(10-1)) Q123 = (2+1) * (61-(59-58)-(56-55)-(53-52)-(50-49)-(47-46)-(44-43)-(41-40)-(38-37)-(35-34)-(32-31)-(29-28)-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q125 = (3+2) * (11-(9-6)-(4-1)) * (51-(49-26)-(24-1)) Q127 = (64+63) Q129 = (2+1) * (64-(62-61)-(59-58)-(56-55)-(53-52)-(50-49)-(47-46)-(44-43)-(41-40)-(38-37)-(35-34)-(32-31)-(29-28)-(26-25)-(23-22)-(20-19)-(17-16)-(14-13)-(11-10)-(8-7)-(5-4)-(2-1)) Q131 = (66+65) Q133 = (4+3) * (64-(62-57)-(55-50)-(48-43)-(41-36)-(34-29)-(27-22)-(20-15)-(13-8)-(6-1))

You may be interested in the method involved.

The Method

In ICF Tertius/Quartus we ended with:
 T133 = (4-3) * (64-(62+57)+(55+50)-(48+43)+(41+36)-(34+29)+(27+22)-(20+15)+(13+8)-(6+1)) Q133 = (4+3) * (64-(62-57)-(55-50)-(48-43)-(41-36)-(34-29)-(27-22)-(20-15)-(13-8)-(6-1))

Now how did we arrive at that?
• First of all Q133 = U67+U66 so the degree of the polynom, one less than the index, is 66.
• Then Q133 = Q(7*19) so te first factor is Q7 = (U4+U3) the degree of which is 3.
The degree of the second factor therefore is 63, meaning that the terms of it start with U64.
• The second factor is related to the corresponding primefactor of the index which is 19.
The number of steps of the reduction is: (corresponding primefactor index - 1)/2.
In this case (19-1)/2 = 9.
The number of terms of the second factor is the corresponding primefactor itself, which is 19.
• Finally the steplength is:
2*(highest index of U in the second factor - the corresponding primefactor)/(corresponding primefactor - 1).
In this case 2*(64-19)/(19-1) = 5.

The tertius only differs in the signs. Typically the sum of the indices in any factor of the quartus is equal to the corresponding primefactor of the index, while the sum of the indices in any factor of the tertius equals 1.

So how difficult can it be to factorize T135 and Q135?
The nice thing about the method is that, provided you've got the previous one's, your only concern is the last primefactor of the index - the other one's are already known.
In this case Q135 = Q3*3*3*5, so the first 3 factors are those of Q3*3*3:
 Q27 = (2+1) * (4-(2-1)) * (10-(8-1))

The degree of Q27 is 1+3+9 = 13. Since the degree of Q135 is 67, the degree of the last factor is 67-13 = 54, meaning that it starts with U55.
The number of steps of the reduction equals: (corresponding primefactor index - 1)/2.
In this case (5-1)/2 = 2.
The number of terms equals the corresponding primefactor itself.
The steplength equals:
2*(highest index of U in the corresponding factor - the corresponding primefactor)/(corresponding primefactor - 1).
In this case 2*(55-5)/(5-1) = 25.

So we get:
 Q135 = (2+1) * (4-(2-1)) * (10-(8-1)) * (55-(53-28)-(26-1))

and consequently:

 T135 = (2-1) * (4-(2+1)) * (10-(8+1)) * (55-(53+28)+(26+1))

Easy as fruitpie.

Near-multiple matrix
This is a small numbers database for quick reference. It shows for which values of 'k' and the index 'near multiples' are prime.
The prime indices in the first column are bases on sum-indexing.
Top row: '2k' for k = 1-50.

On index 3 the terms of tertius and quartus, are of the first degree and can have any form.
For indices 5 and up, the prime factors of a term, irrespective of the factor 'F' of the series, are either the index itself, or a near-multiple of the index, that is: of the form (2k*index-1) or (2k*index+1).
I have no idea why this should be the case, but after generating hundreds of terms of hundreds of series, I've never found an exception.
Prime pairs are given in a darker background.
 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 5 11 19 29 31 41 59 61 71 79 89 101 5 109 131 139 149 151 179 181 191 199 5 211 229 239 241 251 269 271 281 5 311 331 349 359 379 389 401 5 409 419 421 431 439 449 461 479 491 499 5 7 13 29 41 43 71 83 97 113 127 139 7 167 181 197 211 223 239 251 281 7 293 307 337 349 379 419 421 7 433 449 461 463 491 503 547 7 587 601 617 631 643 659 673 701 7 11 23 43 67 89 109 131 197 199 11 241 263 307 331 353 373 397 419 439 11 461 463 571 593 617 11 683 727 769 857 859 881 11 947 967 991 1013 1033 11 13 53 79 103 131 157 181 233 13 311 313 337 389 443 467 521 13 547 571 599 677 701 727 13 857 859 883 911 937 1013 1039 13 1091 1093 1117 1171 1223 1249 1301 13 17 67 101 103 137 237 271 307 17 373 409 443 509 577 613 647 17 883 919 953 1019 1021 17 1087 1123 1223 1259 1291 1327 1361 17 1427 1429 1531 1597 1667 1699 17 19 37 113 151 191 227 229 379 19 419 457 569 571 607 647 683 761 19 797 911 1063 1103 19 1217 1291 1367 1481 1483 19 1559 1597 1709 1747 1787 1823 1861 1901 19 23 47 137 139 229 277 367 461 23 599 643 691 827 829 919 23 967 1013 1103 1151 1289 1381 23 1427 1471 1609 1657 1747 23 1931 1933 1979 2069 2161 2207 23 29 59 173 233 347 349 463 521 523 29 811 929 1103 29 1217 1277 1451 1567 1741 29 1913 173 2029 2087 2089 2203 29 2377 2437 2551 2609 2843 29 31 61 311 373 433 557 619 31 683 743 929 991 1117 31 1301 1303 1427 1487 1489 1549 1613 1861 31 2293 2357 2417 31 2543 2729 2789 2791 2851 3037 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 37 73 149 223 443 593 739 37 887 1259 1481 37 1553 1627 1777 1997 1999 2221 37 2293 2441 2591 2663 2887 37 3109 3181 3257 3329 3331 3701 37 41 83 163 409 491 739 821 41 983 1229 1231 1559 41 1721 1723 2131 2213 2297 2377 2459 41 2543 2707 2789 2953 41 3361 3527 3607 3691 3853 4019 4099 41 43 173 257 431 601 773 859 43 947 1031 1033 1117 1289 1291 1549 1721 43 1979 2063 2237 2579 43 2753 2837 3011 3181 43 3527 3613 3697 4127 4129 43 47 281 283 563 659 751 941 47 1033 1129 1223 1409 1597 1693 1787 1879 47 1973 2069 2161 2351 2539 2633 2819 47 3571 3761 47 3853 3947 4229 4231 4513 47 53 107 211 317 743 953 1061 53 1483 1697 1801 1907 53 2333 2437 2543 2861 2969 3181 53 3391 3499 3709 3923 4027 4133 4241 53 4451 4663 4877 5087 53 59 353 709 827 1061 1063 1181 59 1297 1889 2243 59 2477 2713 2833 3067 3187 3539 3541 59 3659 4013 4129 4483 4603 4721 59 4957 5309 5783 59 61 367 487 733 853 977 1097 61 1709 1831 1951 2441 61 2683 2927 3049 3539 3659 61 4027 4271 4391 4513 4637 4759 61 5003 5857 6101 61 67 269 401 937 67 1607 1609 1741 1877 2011 2143 2411 67 3083 3217 3617 4019 4021 67 4153 4289 4421 4423 4691 4957 5227 67 5897 6029 6163 6299 6701 67 71 283 569 709 853 1277 1279 71 1847 1987 2129 2131 2273 2557 2699 71 3407 3691 3833 4259 4261 71 4969 5113 71 5821 6247 6389 6673 6959 71 73 293 439 877 1021 1459 73 1607 1753 73 3067 3359 3797 3943 73 4673 4817 5693 5839 73 5987 6131 6133 6277 6569 6571 6863 73 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

 79 157 317 631 947 1423 1579 79 2053 2213 2371 2687 2843 3001 79 3319 3793 4423 4583 79 5531 5689 6163 79 6637 6793 7109 7583 7741 7901 79 83 167 331 499 829 997 1163 1327 1493 83 1993 2657 3319 83 4481 4483 4649 4813 83 5147 5477 5479 6143 6473 83 6971 83 89 179 1069 1423 1601 89 2137 2671 3203 3559 89 3739 3917 4093 4271 4273 4451 89 5519 6053 6229 6763 7121 89 7297 7477 8009 8011 8543 89 97 193 389 971 1163 1553 1747 97 2521 2909 3299 3491 3881 97 4073 4463 4657 5237 5431 5821 97 6791 6983 7177 7759 97 8147 8537 8731 8923 9311 97 101 607 809 1009 1213 101 2221 2423 3433 3637 101 4241 4243 5051 5657 5857 101 6263 6869 7069 7877 7879 8081 101 8887 9091 9293 9697 10099 101 103 617 619 823 1031 1237 103 2267 2473 2677 3089 3709 103 4327 4943 5563 103 7211 7417 7621 7829 103 8447 9887 10093 10301 103 107 641 643 857 1069 1283 1499 2141 107 3209 3637 3851 3853 107 4493 5351 5563 5779 6421 107 7489 7703 7919 107 9203 9629 9631 10271 10273 10487 107 109 653 1091 1307 2179 109 2399 2617 2833 3271 3923 109 5231 5233 5449 5669 6323 109 6977 7193 7411 8501 8719 109 9157 9811 10247 10463 109 113 227 677 1129 1583 113 2711 2713 2939 3163 3389 3391 3617 3881 4561 113 4973 5197 5651 6101 6329 6553 6779 6781 113 7457 7459 8363 9041 113 9491 9719 10169 10847 11299 113 127 509 761 1523 1777 2287 2539 127 3049 3301 3557 5081 127 5333 5843 6607 6857 7621 127 7873 9397 9907 10159 127 10667 11177 11939 127 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 131 263 523 787 1049 1571 2357 2621 131 3407 3929 3931 131 5501 5503 6287 6551 131 8123 8647 9431 9433 131 11003 11261 11527 11789 12577 13099 131 137 547 821 823 1097 2467 2741 137 4111 4657 4931 4933 5479 137 6029 6301 6577 7673 8219 8221 137 9041 9043 10139 10687 137 11783 12329 13151 137 139 277 557 1667 1669 2503 139 3613 4447 5003 5281 139 5839 6673 6949 7229 7507 139 9173 10007 10009 11119 139 11399 11677 11953 12511 139 149 1193 1489 1787 1789 2087 2383 2683 149 149 6257 7151 7451 8641 8941 149 9239 9833 10133 10429 10729 11027 11621 149 12517 13411 13709 14303 149 151 907 1511 1811 2113 2417 2719 3019 151 3323 3623 4229 4831 5437 5737 151 6343 6947 7247 7549 7853 9059 151 9967 10267 11173 11777 11779 151 13591 14797 15101 151 157 313 941 1571 157 3767 3769 4397 5023 5651 5653 157 6907 7537 9419 9421 157 11617 11933 157 13187 14759 15073 157 163 653 977 1303 2281 2609 3259 163 3911 4889 5867 5869 6521 163 7499 7823 8803 9781 163 10433 11083 11411 12713 163 13367 13691 13693 14669 15647 15649 15973 16301 163 167 1669 2003 2339 2671 167 3673 4007 5009 5011 6011 6679 167 7013 7349 7681 8017 167 10687 11589 167 13693 14029 15031 16033 16699 167 173 347 691 1039 2423 2767 3461 173 4153 5189 5881 6229 173 9341 9343 9689 173 11071 12109 12457 13147 13841 173 14533 14879 15569 16607 17299 173 179 359 1433 1789 3221 3581 179 4297 5011 6803 7159 179 7517 7877 8233 8951 10739 179 11813 12889 13963 14321 179 16111 17183 179 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100