### Who's Online

We have 51 guests and no members online

Carréphylic classes: n2+n/2 (for even n)

Here are the first 6 carréphylic numbers of the form n2+n/2 (for even n) with the usual data.
The first non-trivial sp-blocks follow a simple pattern (4n+1)/n. The qt-blocks follow an even simpler one: n/1.
Their v-value equals -n/2.

√5
 1 0 1 2 7 9 20 29 38 123 161 360 521 682 2207 2889 6460 9349 12238 39603 51841 115920 167761 219602 710647 930249 2080100 3010349 3940598 12752043 16692641 37325880 54018521 70711162 228826127 299537289 669785740 ... 0 1 1 1 3 4 9 13 17 55 72 161 233 305 987 1292 2889 4181 5473 17711 23184 51841 75025 98209 317811 416020 930249 1346269 1762289 5702887 7465176 16692641 24157817 31622993 102334155 133957148 299537289 ...

√18
 1 0 1 2 3 4 13 17 72 89 106 123 140 437 577 2448 3025 3602 4179 4756 14845 19601 83160 102761 122362 141963 161564 504293 665857 2824992 3490849 4156706 4822563 5488420 17131117 22619537 95966568 ... 0 1 1 1 1 1 3 4 17 21 25 29 33 103 136 577 713 849 985 1121 3499 4620 19601 24221 28841 33461 38081 118863 156944 665857 822801 979745 1136689 1293633 4037843 5331476 22619537 ...

√39
 1 0 1 2 3 4 5 6 19 25 156 181 206 231 256 281 306 943 1249 7800 9049 10298 11547 12796 14045 15294 47131 62425 389844 452269 514694 577119 639544 701969 764394 2355607 3120001 19484400 22604401 25724402 28844403 31964404 35084405 38204406 117733219 155937625 973830156 ... 0 1 1 1 1 1 1 1 3 4 25 29 33 37 41 45 49 151 200 1249 1449 1649 1849 2049 2249 2449 7547 9996 62425 72421 82417 92413 102409 112405 122401 377199 499600 3120001 3619601 4119201 4618801 5118401 5618001 6117601 18852403 24970004 155937625 ...

√68
 1 0 1 2 3 4 5 6 7 8 25 33 272 305 338 371 404 437 470 503 536 1641 2177 17952 20129 22306 24483 26660 28837 31014 33191 35368 108281 143649 1184560 ... 0 1 1 1 1 1 1 1 1 1 3 4 33 37 41 45 49 53 57 61 65 199 264 2177 2441 2705 2969 3233 3497 3761 4025 4289 13131 17420 143649 ...

√105
 1 0 1 2 3 4 5 6 7 8 9 10 31 41 420 461 502 543 584 625 666 707 748 789 830 2531 3361 34440 ... 0 1 1 1 1 1 1 1 1 1 1 1 3 4 41 45 49 53 57 61 65 69 73 77 81 247 328 3361 ...

√150
 1 0 1 2 3 4 5 6 7 8 9 10 11 12 37 49 600 649 698 747 796 845 894 943 992 1041 1090 1139 1188 3613 4801 58800 ... 0 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 49 53 57 61 65 69 73 77 81 85 89 93 97 295 392 4801 ...